
When Would This Bug Get Reported?

Ferdian Thung1, David Lo1, Lingxiao Jiang1, Lucia1, Foyzur Rahman2, and Premkumar T. Devanbu2

1Singapore Management University, Singapore
2University of California, Davis, USA

{ferdianthung,davidlo,lxjiang,lucia.2009}@smu.edu.sg, {mfrahman,devanbu}@cs.ucdavis.edu

Abstract—Not all bugs in software would be experienced
and reported by end users right away: Some bugs manifest
themselves quickly and may be reported by users a few days
after they get into the code base; others manifest many months
or even years later, and may only be experienced and reported
by a small number of users. We refer to the period of time
between the time when a bug is introduced into code and the
time when it is reported by a user as bug reporting latency.
Knowledge of bug reporting latencies has an implication on
prioritization of bug fixing activities—bugs with low reporting
latencies may be fixed earlier than those with high latencies
to shift debugging resources towards bugs highly concerning
users. To investigate bug reporting latencies, we analyze bugs
from three Java software systems: AspectJ, Rhino, and Lucene.
We extract bug reporting data from their version control
repositories and bug tracking systems, identify bug locations
based on bug fixes, and back-trace bug introducing time based
on change histories of the buggy code. Also, we remove non-
essential changes, and most importantly, recover root causes
of bugs from their treatments/fixes. We then calculate the bug
reporting latencies, and find that bugs have diverse reporting
latencies. Based on the calculated reporting latencies and
features we extract from bugs, we build classification models
that can predict whether a bug would be reported early
(within 30 days) or later, which may be helpful for prioritizing
bug fixing activities. Our evaluation on the three software
systems shows that our bug reporting latency prediction models
could achieve an AUC (Area Under the Receiving Operating
Characteristics Curve) of 70.869%.

I. INTRODUCTION

Bugs are present in most software systems. Many bugs

can be uncovered when developers perform testing activities

or apply bug finding tools. However, due to time pressure

and budget limitations, not all such detected bugs can be

fixed before they get shipped to end users. Bug fixes may

also require additional regression tests to make sure the fixes

do not break other program behaviors that previously work

well. Thus, developers need to make an informed decision

on what bugs to fix and what not to fix prior to release. If

bugs are shipped to users, patches could be released later or

never, depending on the effects of the bugs on users.

Not all bugs have equal effects. Some bugs only affect

minor functionalities which might not be used by any user.

Others affect core functionalities that are used by many. The

former kind of bugs are seldom noticed early by end users,

possibly only by expert users who have used the program

for a long period of time. The latter kind of bugs are often

noticed soon after release and may be reported early. Thus,

ignoring bug reports that may not need to be fixed would

also help to reduce the developer efforts and improve the

utility of software testing and bug finding tools.

In this paper, we are interested in understanding the time

between the introduction of a bug into the code base of a

software system and the reporting of the bug by users after

they start to use the program. We refer to this time period

as the bug reporting latency. In effect, we want to provide

answers to the following research question:

When would a bug get reported?

This question has implications on what bugs should be

fixed first within the time budget before release, as bugs that

may be reported early should be fixed first so that developers

may focus on code cared more by users. Prediction models

that can provide qualitative measures about bug reporting

latencies could thus be useful for prioritizing bug fixing

activities. The following scenarios illustrate the benefits of

understanding bug reporting latencies.

Scenario 1: Ferdian noticed a bug in his code before release.

He started to fix it right away. However, the fix took more

time and effort than he thought, and he was not sure

whether the fix would introduce other bugs. So he carried

out additional regression tests and was happy to find no

other bugs. Then, he went ahead to release his code, but the

release was one month later than previously planned.

Scenario 2: Ferdian noticed a bug in his code before release.

He would like to fix it right away, but he was aware of two

complicating issues: a) fixing the bug takes time and effort,

and might introduce other bugs; b) this bug may not trigger

any failure for a long time in the field. So he started to

estimate how likely a user would actually experience and

report the bug, and he found that similar bugs in the bug

databases may not be noticed by any user in three months

after release. Based on the estimation, Ferdian chose to

release his code as planned and delay the fix of this bug

until the time when the next field upgrade would be issued.

Thus, he kept the promise to release his code at certain time

and had additional time to fix the bug and test the change.

Scenario 3: Ferdian noticed a bug in his code before release.

He would like to fix it right away, but he was aware of

the potential issues as those in Scenario 2. So he started

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

to estimate how likely a user would actually experience

and report the bug, and he found that similar bugs in the

bug databases may be noticed by a user in one month after

release. Thus, Ferdian chose to fix the bug right away and

apply additional tests for the change. As a result, the effect

of this fix was the same as Scenario 1 where the bug was

fixed but the release of his code was delayed by one month.

There are studies aimed to predict the severity and priority

of bugs from corresponding bug reports [32], [33], [40]. Our

work is different from these studies in several aspects. First,

we prioritize bug fixing activities prior to release, while they

prioritize bug fixing activities after bugs are reported by

end users. Second, we predict bug reporting latencies which

are not provided by studies on bug severity and priority

prediction. Third, we investigate the code responsible for the

bug, while they investigate bug reports which may involve

various kinds of information, such as text description, call

stacks, core dumps, etc. There are also studies that can

prioritize bug reports before releases and help to improve

the accuracy of bug finding tools, such as [3], [28], [41],

[48], they mostly aim to differentiate true bug reports from

false positives bug reports and often make decisions based

on various code features or bug histories, while we prioritize

true bug reports only and make our decisions based on bug

reporting latencies. To the best of our knowledge, our work

on understanding and predicting bug reporting latencies is

new and orthogonal to previous work.

In this paper, we study reporting latencies for 190 bugs

from three Java software systems: AspectJ, Rhino, and

Lucene. We collect the bug and bug fix data for these

projects from iBugs [1] and JIRA [2] respectively. To

find the buggy code, we compare the corresponding bug

tracking system and source control system of each of the

three software systems. We find the reporting time for a

particular bug from the bug tracking system, and also find

code commits that fix the bug in the source control system.

By performing a diff between these commits and the ones

before it, we could find the treatments of the bugs. We

then perform a manual analysis to recover their root causes

(i.e., the faulty program elements responsible for the bugs)

from the treatments and the introduction time of the faulty

program elements. We find that the bug reporting latencies

for various bugs in various systems are very diverse, ranging

from one day to more than three years. Also, bug severities

seemingly have no effect on bug reporting latencies.

Based on the bug reporting latency data, we also develop

a prediction engine that can predict when a bug would get

reported. We first extract features from buggy code. We

consider a number of code features, such as the number of

conditional statements, the number of looping statements,

and betweenness centralities of the nodes in call graphs.

Then, these features are normalized and used to build

discriminative models with the aid of classifiers. The models

are then used to predict whether a bug would be reported

early (in less than 30 days) or not. We evaluate our prediction

models on the 190 bugs with 10-fold cross validations. Since

the data is skewed (much more bugs are reported in more

than 30 days) and has only two classes (early and late), we

measure the accuracy of our predictions with Area Under the

Receiver Operating Curve (AUC) [35], which has also been

used in prior studies on predicting bug report severities [32].

Our evaluation shows that an AUC of 70.869% could be

achieved when Support Vector Machines (SVM) [23] are

used as the classifier.

The contributions of our work are as follows:

1) We propose a new problem of studying bug reporting

latencies, namely the period of time between the intro-

duction of a bug and the time when it is reported by end

users. One goal of such a study is to help developers

prioritize bugs prior releases.

2) We propose an approach to collect bug reporting la-

tencies from software systems with version control

repositories and bug tracking databases.

3) We develop an approach to predict whether the bug

reporting latency for a bug would be low (below 30

days) or high. We extract features from buggy code and

build a discriminative model to predict report latencies.

4) We have investigated 190 bugs extracted from AspectJ,

Rhino, and Lucene and find diverse bug reporting

latencies. We show that our proposed prediction engine

could predict bug reporting latencies with good accu-

racy (AUC of 70.869%). We have also investigated a

number of classifiers and evaluated their performance

in predicting bug reporting latencies.

The structure of this paper is as follows. Section II

presents our approach in detail. Section III describes our

evaluation. We discuss related work in Section IV. Finally,

we conclude with future work in Section V.

II. PROPOSED APPROACH

In this section, first we present our overall approach, and

then present steps of the approach in detail.

A. Overall Approach

First, we set out to investigate and collect bug reporting

latencies from known bugs from existing software systems

so that we can build a ground truth about the existing

latencies. We analyze several software systems using their

repositories and bug tracking systems. We manually label

faulty lines and find out when the last time each faulty line is

changed. Using these times, we calculate the most likely bug

reporting latency for each bug.We present the investigation

we have performed for collecting latencies from various

systems in more details in Section II-B.

Then, we construct prediction models based on the col-

lected data. Our overall prediction flow is illustrated in

Figure 1. It has training and deployment phases. In the

training phase, we take in as input a set of bugs along

�������� ���

�	���
 � �����

�	������ �������

Bug Reports With

Unknown

Reporting Latency

�������

����������

Feature

Extraction

Model

Construction

Model

Application
Model

Training Phase Deployment Phase

Predicted Reporting

Latency Label

�

2 3

1

������

��	��

�����

������ ����� ������ !���

"��	��

Figure 1. Proposed Bug Latency Prediction Framework

with their reporting latency labels (early or late). The bug

reports are then subject to (1) feature extraction and (2)

model construction. In the feature extraction step, we extract

features from buggy code and use the features to build a

discriminative model in the model construction step via a

classifier. In the deployment phase, we take in as input a

set of bugs with unknown reporting latency labels. Again,

we extract features from the bugs as in the training phase.

The model application process (3) finally applies the learned

model to classify every bug with an unknown latency label,

based on its features, as to whether it is likely to be reported

in short or long period of time.

We present the feature extraction step in subsection II-C.

The model construction and application steps are discussed

in subsection II-D.

B. Latency Data Collection & Analysis

First, we need to get bug information from the bug

databases and the source code repositories of each software

system we investigate. From this information, we identify

root causes of a bug, i.e., the faulty program elements that

are responsible for the bug. We expect developers to have

this information when they encounter the failure during the

testing phase. Note that knowing where a fault is is just the

first step among the many steps needed to fix the bug.

We perform the identification by manually investigating

the differences between the fixed file and the buggy file

before fix. We use diff to make this process easier. We then

label the lines that we suspect are responsible for the bug.

Unfortunately, diff is unable to directly give us the code

responsible for the bug. diff only gives us information on

what changes are made to fix the bug. Thus, they are only

treatments of the bugs rather than the root causes of the

bugs. For example, a piece of code may be moved around

to make it easier to implement the actual fix. Also, not all

changed lines are meant for fixing the bug. For example,

previous studies (e.g., [25]) show that some changes are non-

essential, such as changing indentation, adding comments,

and code refactoring that do not change the behavior of a

program. Our manual labeling process is based on personal

investigation using the bug report message as guidance. We

do not use automated techniques (e.g., [30]) to identify bug-

inducing changes since we need all identified faulty lines to

be accurate and we want to avoid biases that may be caused

by possible false positives introduced by the tools. At the

end of this process, we shall have the faulty lines for each

bug. Using these faulty lines, we construct the features as

defined in Subsection II-C.

Next, we want to find the time each bug gets introduced

to the code. For this purpose, we use “git blame” or “cvs

annotate” or similar scripts in the corresponding source

control repositories for the software system to find out the

time when the latest time each faulty line is changed. The

result is a collection of the likely introduction dates for each

bug. Each date in the collection of likely introduction dates

corresponds to a labeled faulty line. This collection could

contain some outliers, and we remove some of these outliers

when we compute bug reporting latencies. Also, we need the

report time for each bug. We find this from the bug tracking

databases for each software system.

Then, we calculate bug reporting latencies as the time

difference between the bug report date and the dates in the

collection of likely bug introduction dates. If the likely bug

introduction date is after the bug report date, we remove

the date from the collection because this is likely to be an

outlier. As the result, we will have a collection of likely bug

reporting latencies. We choose to use the shortest latency in

the collection as the most likely reporting latency for the bug.

This is based on the intuition that the latest code changed

is more likely to be the direct cause of the bug, and the

fact that we noticed that the earliest faulty line introduction

date for a number of bugs is for a very old piece of code

that does not seem to be related to the bug. By taking the

shortest latency, we aim to minimize latency estimations and

it may lead to more fall-backs to Scenario 1 where reporting

latencies are not used for prioritizing bug fixing activities.

At this point, we have the features and the bug reporting

latencies which can be used for classification. We convert

each bug reporting latency into class label, either early or

late. Early is for bug reporting latencies shorter than or equal

to 30 days, and late is for bug reporting latencies longer than

30 days. Based on the data collected about the bug reporting

latencies and other bug characteristics (e.g., bug severity as

indicated by developers), we seek to understand the data

by investigating two research questions (RQ1 & RQ2) in

Section III-B.

C. Feature Extraction

We extract a number of features from faulty code to

facilitate the construction of prediction models. These fea-

tures are listed in Table I. We make use of the counts of

a number of program elements, and two measures taken

from social network analysis and web search, betweenness

centrality [14] and PageRank [5].
1) Program Elements Counts: Intuitively, bugs in

program elements of different types may be exhibited

differently. For example, a bug in a looping statement

might have more chances to be exhibited as the faulty

statement might be executed more frequently by users

than another bug at a simple assignment statement. We

would like to investigate the relationship between types of

program elements and bug reporting latencies. Thus, we

include a number of features that are the number of times

various program elements appear in the buggy code. These

include CountLine, MethodDeclarationNode,

MethodInvocationNode, ConditionNode,

LoopNode, AssignmentNode, FieldAccessNode,

ConditionExp, ReturnNode, and TryNode.
CountLine is the number of lines in the buggy code.

Similarly, the other features count the number of times

various types of program elements, including method decla-

rations, method invocations, conditional statements, looping

statements, assignment statements, field accesses, condi-

tional expressions, return statements, and try statements,

appear in the buggy code. We normalize these numbers by

dividing these counts by the corresponding CountLine.
2) Betweenness Centrality: Intuitively, bugs at “impor-

tant” program elements are likely to be discovered earlier

than those at unimportant program elements. We measure

the “importance” of a piece of code by using betweenness

centrality and PageRank, and investigate whether these mea-

surements are related to bug reporting latencies by using

them in our prediction engine.
Betweenness centrality is proposed in the social network

analysis community to measure how important a node is

in a graph [14]. The importance of a node in the graph is

measured by the number of shortest paths between pairs of

other nodes that pass through the node. The betweenness

centrality of a node n is given by the following formula:

bc(n) =
∑

a 6=b6=n

spath(a, b, n)

spath(a, b)

In the equation, spath(a, b, n) refers to the number of

shortest paths between node a and node b that pass through

node n . spath(a, b) refers to the number of shortest paths

between node a and node b.
To compute BetweennessScore for each bug, we

construct a call graph to connect all methods in the code

base and compute the betweenness centrality of the methods

that contain the faulty lines. BetweennessScore is the

logarithm of the summation of the betweenness centrality

of all methods containing the faulty lines. We take the

logarithm as the summation of the betweenness centralities

might be very large numbers.

3) PageRank Score: PageRank is a popular algorithm

used in web search to measure the importance of a web

page. It was proposed by Brin and Page [5] and has been

used inside Google search engine. Simply put, PageRank

assumes that web pages with more links pointing to them

are more important than pages with less links pointing to

them. PageRank computes the likelihood of a web surfer to

visit a web page starting from an arbitrary page.

PageRank is often calcluated in iterations. At the initial

iteration, all pages are assigned the same PageRank score.

At each of the following iterations, the score of a page p

is distributed to the pages that p links to. Each linked page

receives 1
|L| of the score, where L is the set of pages that p

links to. The PageRank score of a web page p at iteration i

can be computed by the following equation:

PR(p, i) =
1− r

T
+ r

∑

q∈K(p)

PR(q, i− 1)

|L(q)|

In the equation, r is the probability that a web surfer

continues to surf (a.k.a. the damping factor), T is the

number of web pages in the database, K (p) is the set of

webpages that link to p, and L(q) is the set of webpages

that q links to.
To compute the value of PageRankScore for a bug,

we also build a call graph connecting all methods in the

code base. We then identify faulty methods that contain

the faulty lines. We then compute the PageRank of all

faulty methods. The PageRankScore value would be the

summation of all these PageRank scores. In the PageRank

score computation, the number of iterations depends on the

termination condition. This condition is fulfilled if the total

number of iterations is equal to or greater than maximum

iterations allowed or the difference between old and new

scores in one iteration is less than a tolerance.

D. Model Construction and Application

In model construction, we assume that we have a set of

training data composed of bugs and their reporting latencies

classified into two classes: short (within 30 days), and long

(more than 30 days). Each bug is represented as a vector of

feature values. We train models that can discriminate bugs

with short latencies from those with long latencies.

We train a discriminative model by employing a clas-

sification algorithm [17]. Various classification algorithms

have been proposed in the literature, such as decision trees,

support vector machines, neural networks, naive Bayes, and

many others. Given a training data, a classification algorithm

would produce a discriminative model in various formats

depending on the algorithm.

If the training data is imbalanced, we equalize the num-

bers of data points with the positive label and the negative

label. We follow the previous work by duplicating the

minority label because we do not want to lose any data

point. So, if the number of data points with the positive

Table I
FEATURES USED FOR PREDICTION MODEL

Feature Definition

CountLine Number of faulty lines
MethodDeclarationNode Number of method declarations containing the faulty lines divided by CountLine
MethodInvocationNode Number of method invocation in the faulty lines divided by CountLine

ConditionNode Number of conditional statement containing the faulty lines divided by CountLine
LoopNode Number of loop statement containing the faulty lines divided by CountLine

AssignmentNode Number of assignment in the faulty lines divided by CountLine
BetweennessScore Logarithm of the summation of the betweenness centralities of methods containing faulty lines
FieldAccessNode Number of field accesses in the faulty lines divided by CountLine

ConditionExp Number of conditional expressions in the faulty lines divided by CountLine
ReturnNode Number of return statements in the faulty lines divided by CountLine

TryNode Number of try statements containing the faulty lines divided by CountLine
PageRankScore Summation of the PageRank score of the methods containing the faulty lines

label is lower than that with the negative label, we duplicate

the data points with the positive label until the number is

equal to that with the negative label. We try to duplicate the

positive label as evenly as possible.

During the deployment phase, we classify a new bug with

unknown latency. To do so, we first extract features from this

new bug. We extract the same set of features as described

in the previous sub-sections. The resultant vector of feature

values is then fed to the discriminative model, which would

then output the latency label (short or long) for the new bug.

III. EMPIRICAL EVALUATION

In this section, we first describe our concrete dataset

taken from three Java software systems: AspectJ, Rhino, and

Lucene. Next, we present our research questions. Then we

then present our findings that answer each of the questions.

Along the way, we describe the evaluation metric, namely

AUC, which is used to measure the effectiveness of our

prediction. Finally, we present the threats to validity.

A. Dataset

We analyze two Java programs (Rhino and AspectJ) from

iBugs repository [1] and a third Java program Lucene from

JIRA [2]. Rhino is a Javascript interpreter written in Java

with a code size of about 49kLOC. AspectJ is a compiler

for aspect-oriented programming in Java with a code size of

about 75kLOC. Lucene (version 2.9) is a text search engine

library with a code size of about 88kLOC. The iBugs repos-

itory stores both pre-fix versions that contain bugs (buggy

versions) and the corresponding post-fix versions where the

bugs are fixed. Each of the buggy versions is assumed to

contain one bug that may span across multiple lines in

multiple files. Information about each fix is also provided,

e.g. the numbers of changed lines, changed methods, and

changed files, and the severity level of the bug. Also, we

can know which lines or files are actually changed based on

the differences between the pre-fix and the post-fix versions.

Similar information about bugs and corresponding fixes in

Lucene is collected from its JIRA repository.

As described in Subsection II-B, we process above dataset

to get bug reporting latencies. To generate features, we count

different types of program elements with JDT [22], build

call graph with Wala [53], and compute the betweenness

centralities and PageRank scores with JUNG [24]. When

computing RageRank, we use the default damping factor

1 and set the maximum number of iterations to 100 and

the tolerance to 0.001. We find the likely bug introduction

dates with “git blame” for Lucene and “cvs annotate” for

AspectJ and Rhino. We ignore bugs in the three systems

where their root causes are ambiguous according to our

manual analysis. We also ignore bugs having a latency less

than one day (similar to the study on bug fixes by Lamkanfi

and Demeyer [31]). At the end of the process, we collect

190 bugs (19 bugs from Rhino, 28 bugs from Lucene, and

143 bugs from Aspectj). 34 of them have short reporting

latencies, and 156 have long reporting latencies.

B. Research Questions

Our study investigates the following five research ques-

tions (RQ1-RQ5). In RQ1, we investigate the distribution of

bug reporting latencies. In RQ2, we explore the relationship

between bug reporting latency and bug severity. In RQ3, we

investigate the effectiveness of our approach in predicting

bug reporting latencies. We investigate the factors that

influence the effectiveness of our approach in RQ4. Finally,

we investigate the effectiveness of a number of classification

algorithms for building discriminative models to predict bug

reporting latencies in RQ5.

RQ1: What is the distribution of bug reporting latencies?

We are interested in investigating how bug reporting laten-

cies vary. If all bugs have similar reporting latencies, then

predicting reporting latencies would not be needed. On the

other hand, if bugs have widely varying latencies, it would

make the problem more challenging.

RQ2: What is the relationships between bug reporting laten-

cies and bug severity? Do bugs with a low latency have a

high severity? A bug report typically indicates the severity

of the bug. This severity could be one of the following:

blocker, critical, major, normal, minor, and

trivial. We would like to understand the correlation

between bug reporting latencies with severities.

RQ3: How accurate does our approach predict bug report-

ing latencies? We compare the accuracy of our approach

with a trivial, random classifier.

RQ4: What are the best features that could better discrim-

inate bugs with short and long reporting latencies? We

extract many features from bug reports. Some of the features

are likely to be better in discriminating bug reports than

other features. We would like to find features that are more

effective than the others.

RQ5: What are the effectiveness of various common classi-

fication algorithms in predicting bug reporting latencies?

When answering the previous research questions (RQ1-

RQ4), we only use Support Vector Machines (SVMs) as

the classifier, which have been used for many software

engineering problems. Our overall framework allows other

classification algorithms, and thus we investigate whether

SVMs could outperform other classification algorithms, such

as decision trees, naive bayes, and neural networks.

C. RQ1: Bug Reporting Latency Distribution

We show the distribution of bug reporting latencies in

Figure 2. From the histogram, we find that there are 34 bugs

reported in one month, 20 bugs reported between one to two

months, 12 bugs reported between two to three months, 33

bugs reported between three to six month, 38 bugs reported

between half a year to one year, and the remaining 53 bugs

reported after one year. We notice that 65.26% of bugs was

reported after 3 months. We also find that only 17.89% of

the bug reported early (within 30 days) and the others are

reported late (later than 30 days).

D. RQ2: Bug Reporting Latency versus Severity

We divide the bugs into several groups based on their

latency. For each group, we investigate the proportion of

bugs of various severity levels. We show the result in

Table II. From the table, we see that for each bug severity,

the highest number of bugs is in latency group >365 for

blocker severity, 91-180 for critical severity, 1-30, 31-60,

and 91-180 for major severity, >365 for normal severity,

>365 for minor severity, and >365 for trivial severity.

We also divide the bugs into those reported within 30

days and those reported more than the 30 days. For each

group, again we investigate the proportion of bug reports

of various severity labels. We show the result in Table III.

From the table we can note that 75% of blocker bug reported

late, 90.9% of critical bug reported late, 75.9% of major bug

reported late, 84.3% of normal bug reported late, 76.2% of

minor bug reported late, and 75% of trivial bug reported late.

Across different severity levels, we see that over 70% of the

bugs is reported late, even for bugs with blocker, critical,

and major severity.

We also calculate the correlation between bug reporting

latencies and their severities. Note that severity is ordinal

Table II
DISTRIBUTION OF SEVERITY PER LATENCY GROUP

Group Blocker Critical Major Normal Minor Trivial

1-30 1 1 7 19 5 1
31-60 0 1 7 9 3 0
61-90 0 0 0 7 4 1
91-180 0 4 7 19 3 0
181-365 1 2 4 31 0 0
>365 2 3 4 36 6 2

Table III
DISTRIBUTION OF SEVERITY PER LATENCY GROUP

Group Blocker Critical Major Normal Minor Trivial

≤ 30 days 1 1 7 19 5 1
> 30 days 3 10 22 102 16 3

categorial, we then treat different levels as an integer number

between 1 and 6, and compute Pearson product-moment

correlation coefficient for this purpose [9]. It is a measure

of linear dependence between two variables. The value is

ranged from -1 to 1. A value -1 means all instances of

variable X increase as variable Y decreases, and value 1

means all instances of variable X increase as variable Y

increases. A zero value means there are no linear correlation

between the two variables. We utilize SPSS [49] to compute

the correlation coefficient between latencies (in days) and

severities. We find that the Pearson coefficient is -0.013. This

number is lower than the critical value of Pearson coefficient

at the significance level of 0.05. It means there are almost no

correlation between bug reporting latencies and severities.

E. RQ3: Bug Report Latency Prediction Results

To measure the effectiveness of our latency prediction, we

adopt the Area Under the Receiver Operating Characteristic

(ROC) Curve (AUC) [12], which is also a metric used

in previous studies in predicting bug severities [32], and

compare our prediction with a random prediction.

1) Evaluation Metric: We use Area Under the Receiver

Operating Characteristic Curve (AUC) [35] to evaluate our

prediction performance because our data is skewed. Receiver

Operating Characteristic Curve (ROC) is a two-dimensional

measure of classification performance. It is a plot of the true

positive rates versus false positive rates. For evaluation mea-

sure, when AUC is equal to 1, the classifier achieves perfect

accuracy. The higher the AUC, the better the performance

achieved by the classifier.

To compute AUC, we need to find the points in ROC curve

for each classifier. Each point corresponds to the true positive

and false positive rates of the classifier when a particular

classification threshold is used to decide whether a data point

would be labeled as positive or negative. From these points

(including (0,0) and (1,1)), we compute the AUC by using

trapezoid area formula as follows:

AUC =

n−1∑

i=1

(TPRi + TPRi+1) ∗ (FPRi+1 − FPRi)

2

0

10

20

30

40

50

60

1-30 31-60 61-90 91-180 181-365 >365

F
re

q
u

e
n

c
y

Latency (days)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

#30 #60 #90 #180 #365 >365

C
u

m
u

la
ti

ve

Latency (days)

Figure 2. Bug Report Latency Time Histogram (Left) and Its Corresponding Cumulative Graph (Right)

where n is the number of points we have in the ROC curve

including point (0,0). TPRi and FPRi is the true positive

rate and the false positive rate for point i respectively.

In our evaluation, we perform k-fold cross validation to

evaluate the classifier. This approach randomly splits the

whole set of bugs into k buckets and perform k iterations.

In each iteration, one bucket is used as testing data and the

remaining buckets are used as training data. We train the

classifier using the training data and evaluate it using the

test data. We compute AUC for each of the iterations, and

take the average of these AUCs. This average AUC is used

as the performance measure of our classifier. We set k=10.

2) Prediction Effectiveness: The performance measure-

ment when SVM is used as a classifier is shown in Ta-

ble IV. We use svm perf implementation [23]. It achieves

on average an AUC of 70.869%. AUC of 0.5 indicates that

a technique is as good as a random technique, while higher

than 0.5 indicates that the technique performs better than the

random technique [34], [46]. Thus, compared with a random

classifier which randomly guesses the latency label for a bug,

a 41.738% improvement of AUC could be achieved. We use

the random classifier as baseline because as far as we know,

there are no other study on bug reporting latencies for us to

compare.
Table IV

PREDICTION MODEL PERFORMANCE MEASURE

Approach AUC

Ours 0.70869
Random 0.5

F. RQ4: Most Discriminative Features

We want to know which feature is the most discriminative

feature. We compute Fisher score for this purpose [7], [11],

[27], [36]. Fisher score is a classifier independent criterion to

measure the discrimination between a feature and the label.

Given data instances xi, i= 1, . . . , n, the Fisher score F (j)
for jth feature can be computed by this equation:

F (j) =
(x̄

(+)
j

− x̄j)2 + (x̄
(−)
j

− x̄j)2

1
n+−1

∑n+

i=1(x
(+)
i,j

− x̄
(+)
j

)2 + 1
n
−
−1

∑n
−

i=1(x
(−)
i,j

− x̄
(−)
j

)2

In above equation, n+ and n− are the numbers of data

points with positive and negative labels respectively. x̄j ,

x̄
(+)
j , and x̄

(−)
j are the average of the jth feature of all,

positive-labeled, and negative-labeled data points. x
(+)
i,j and

x
(−)
i,j is the jth feature of the ith positive/negative data point.

The score for each feature is in Table V. Based on Fisher

scores, the most discriminative feature to predict whether a

bug would be reported early or late is the normalized number

of loops contained in the bug. The second best feature is line

count. The third one is normalized number of try statements

contained in the bug. The fourth one is normalized number

of conditionals. The fifth is PageRank. Other special feature

we add for the classification is betweenness centralities. It

ranks ninth based on its Fisher score.

Table V
FISHER SCORE FOR EACH FEATURE

Feature Fisher Score

LoopNode 0.228958166
CountLine 0.090998204
TryNode 0.064501643
ConditionNode 0.040184208
PageRankScore 0.024143757
FieldAccessNode 0.016027146
MethodDeclarationNode 0.015991601
AssignmentNode 0.010149085
BetweennessScore 0.006147854
ConditionExpNode 0.002262019
MethodInvocationNode 0.000442194
ReturnNode 0.000028648

G. RQ5: Best Classification Algorithm

We want to compare the performance of other classi-

fication algorithms in classifying bug reporting latencies.

We choose ADTree, Naive Bayes, and Voted Perceptron

to be compared with SVM. ADTree (alternating decision

tree) is an algorithm that combines decision trees and

boosting [16]. It works like normal decision trees, but instead

of just following one path, it follows all paths in which the

condition is true. Each of the paths will give a score. The

sum of all these scores is used as the final score. A data

point is classified as positive if its final score is positive

and vice verse. Naive Bayes [45] is a classifier based on

Bayes theorem. The classifier computes the probability of

each class label for a data point. The label with the highest

probability is the predicted label for that data point. Voted

Perceptron is a single layer perceptron variant which apply

voting process to the original algorithm [15].

We use the Weka implementation of each of these algo-

rithms [56]. The performance of these algorithms is shown

in Table VI. None of these algorithms achieves a better AUC

score than SVM.
Table VI

OTHER CLASSIFICATION ALGORITHM PERFORMANCE MEASURE

Algorithm AUC

ADTree 0.6211
Naive Bayes 0.6552
Voted Perceptron 0.6252

We also investigate the efficiency of the classification

algorithms. We show the runtime of the classification algo-

rithms in Table VII. We calculate these values by running the

classification algorithm ten times and average the runtime

costs. We notice that Voted Perceptron is the fastest algo-

rithm followed by Naive Bayes, ADTree, and lastly SVM.

Even though SVM has the best performance, it takes a long

time to run. The time needed for SVM is about nine times

of that of Voted Perceptron. It is somewhat understandable

considering that SVM usually needs many iterations until it

finds the optimal solutions.

Table VII
RUNTIMES OF VARIOUS CLASSIFICATION ALGORITHM

Classification Algorithm Time (in Seconds)

SVM 21.16
ADTree 2.64
Naive Bayes 2.45
Voted Perceptron 2.36

H. Threats to Validity

There are threats to construct validity, threats to internal

validity, and threats to external validity.

Threats to construct validity refers to the suitability of our

evaluation measure. We use AUC [35], which is a standard

measure proposed to evaluate the accuracy of a classification

task for imbalanced data with two class labels and used by

Lamkanfi et al. [32] to evaluate the accuracy of predicting

the severity labels of bug reports.

Threats of internal validity refers to evaluation errors and

bias. We manually extract root causes of bugs and bug

introduce time from their fixes. This process might be error

prone. We have tried to reduce this error by re-checking

the resultant root causes. Also, the bug tracking systems we

use have no clear indication whether a bug reported is pre-

release or post-release, and thus we assume the distribution

of the predictors to use is the same between the pre-release

and post-release bugs.

Threats of external validity refers to the generalizability

of our findings. Due to the manual labor involved in the

identification of bugs, we only analyze 190 bugs. We have

tried to reduce this threat by analyzing bugs from various

software systems. In the future, we plan to reduce this threat

by investigating more bugs from more software systems.

IV. RELATED WORK

In the following, we present a number of related studies

on bug severity prediction, bug fix time prediction,

Bug Severity Prediction. This line of work tries to predict

the severity and priority of a bug report. Some examples of

this line of work are the work by Menzies and Marcus [40],

Lamkanfi et al. [32], [33], etc.

The pioneer of this work is Menzies and Marcus who

predict the severity of bug reports from NASA [40]. They

use information retrieval technique to extract a set of word

tokens from the reports and sort the tokens based on their

importance. To find the importance of the word tokens,

the term frequency, inverse document frequency, and infor-

mation gain of the word tokens are computed. The top-k

important tokens are then input to a classification approach

Ripper [10] to produce a set of classification rules. Their

approach could predict the severity label of a new bug report.

Extending the work of Menzies and Marcus, Lamkanfi et

al. investigate bug reports of various open source projects

from their corresponding Bugzilla’s [32]. Instead of predict-

ing the exact severity label of a new bug report, they group

bug reports into severe and not severe. They group blocker,

critical, and major into severe bug reports. Minor and trivial

labels are grouped into non-severe bug reports. They drop

all bug reports classified as normal. Following the above

work, Lamkanfi et al. also investigate the effectiveness of a

number of classification algorithms in predicting the severity

of bugs [33]. Their experiments show that Naive Bayes

outperforms other classification algorithms on a dataset

containing 29,204 bug reports. The work by Herraiz et

al. [18] suggests that there are too many severity levels used

in Eclipse project and there is a need to simplify them.

Work by Kim et al. [30] identify the changes in the pro-

gram that potentially introduce bugs. Buse and Weimer [6]

propose a statistical model to predict the execution frequen-

cies of program paths in a program which may be used for

bug finding or bug latency prediction.

Different from the above studies, our work do not analyze

bug reports rather buggy code. We output information on

predicted bug reporting latency period which is not output

by any of the existing studies. Most importantly, we consider

another problem setting namely on the prioritization of bugs

that are found post-release. The above studies would be very

useful to prioritize post-release bugs. However, they could

not be used to prioritize pre-release bugs as there are not

bug reports to analyze prior to a release.

Bug Fix Time Prediction. This line of work predicts the

time needed to fix a particular bug. Weiß et al. predict the

number of developer hours needed to fix a bug by looking for

similar existing bug reports and investigate the time needed

to resolve the issues for prior similar bug reports [55]. These

times are used to predict the time needed to predict a new

bug report. A more recent study was performed by Hosseini

et al. [19]. An empirical study on how long developers took

to fix bugs has also been done by Kim and Whitehead [29].

They report some statistics of bug fixing time and highlight

the top files in terms of highest bug fixing time.

Duplicate Bug Report Prediction. This line of work tries

to detect if a new bug report is a duplicate of an existing

bug report. There are many studies that take in a new bug

report and returns the top-k most similar bug reports to it.

Developers then check if the new bug report is a duplicate

or not by looking at the top-k bug report list. This is referred

to as duplicate bug report retrieval problem. Studies work on

another problem that is referred to as duplicate bug report

identification problem, where the task is, given a new bug

report, to predict if it is a duplicate or not.

There are a number of existing studies on duplicate bug

report retrieval. One of the first study was performed by

Runeson et al. which proposes a formula that computes

the similarity of two bug reports based on the concept

of term frequency [47]. Wang et al. propose a formula

that consider both term frequency and inverse document

frequency [54]. Wang et al. not only consider the similarity

of words between two bug reports but also the similarity

of the execution traces corresponding to the bug reports.

Jalbert and Weimer propose yet another formula based

on term frequency for duplicate bug report retrieval; they

also propose a solution for bug report identification [21].

Recently Sun et al. make use of Support Vector Machine

(SVM) for finding similar bug reports [51]. Sun et al. later

extend this work by proposing a new measure based on

BM25F to compare two bug reports [50]. Tian et al. extend

the work of Jalbert and Weimer by proposing an effective

set of features that could better predict if a bug report is a

duplicate or not [52].

Warning Prioritization. This line of work tries to identify

whether a warning reported by an automated bug finding

tool is really true or just a false positive [3], [28], [41], [48].

In this work, we analyze real bugs rather than warnings and

our goal is to estimate how long it takes until the real bugs

get noticed and reported.

Bug Categorization. This line of work assign bugs into

various categories. Huang et al. propose a work that assign

bug reports into one of the following labels: capability, secu-

rity, performance, reliability, requirement, and usability [20].

Pordguski et al [44] and Francis et al. [13] group reported

software failures such that reports of each group share

the same or similar causes by analyzing the corresponding

execution traces. Kim et al. [26] predict top crashes that

occur before a new software release based on crashes that

frequently occur in past releases.

Empirical Study on Bugs. There are number of empirical

studies on bugs. Pan et al. perform an empirical study to find

out what kinds of bug fixes have been performed in a number

of open source software systems [43]. Chou et al. perform

an empirical study on errors in operating systems [8]. Palix

et al. investigate different faults in Linux ten years after the

study by Chou et al. [42]. Bird et al. [4] investigate bug

feature and commit feature bias in defect datasets used to

evaluate the performance of defect prediction techniques and

that bug feature bias could impact the performance of defect

prediction techniques.

V. CONCLUSION AND FUTURE WORK

We investigate the problem of prioritizing bugs by predict-

ing the latency between the time when a bug is introduced

to the code base and the time when a bug is likely to

be experienced and reported by end users. We refer to

this as bug reporting latency problem. We have collected

bug reporting latencies from three Java software systems:

AspectJ, Rhino, and Lucene, and find that reporting latencies

are diverse and not correlated with bug severities. We find

that only 17.89% of the bug reported early (within 30 days)

and the others are reported late.

We also propose a classification-based approach to predict

bug reporting latencies. To do that, we extract features from

buggy code and use these features to build discriminative

models via classifiers. The discriminative models are then

used to label future bugs to identify if they would be reported

in a short period of time (within 30 days) or not.

We have evaluated our prediction models on bugs from

AspectJ, Rhino, and Lucene. The results show that we could

predict bug reporting latencies with an AUC of 70.869%.

We also find that the best five most discriminative features

are the normalized number of loops contained in the bug,

the line count of the bug, the normalized number of try

statements contained in the bug, the normalized number of

conditionals contained in the bug, and the PageRank scores.

Lastly, we find that SVM is the most accurate classification

algorithm in our solution, even though it has the longest

runtime than others.

In the future, we plan to improve the accuracy of our

proposed approach by leveraging other features that we

could extract from bugs (e.g., semantics or functionality of

the related code) and by proposing a better classification

approach (e.g., by considering more fine grained labels

or even predicting actual reporting latencies). We could

potentially leverage frequent patterns and rules, c.f. [7],

[37]–[39]. We also plan to evaluate on a larger set of bugs

from more real programs.

REFERENCES

[1] “iBUGS,” http://www.st.cs.uni-saarland.de/ibugs/.
[2] “Lucene-JIRA,” https://issues.apache.org/jira/browse/LUCENE.
[3] N. Ayewah and W. Pugh, “The Google FindBugs fixit,” in

ISSTA, 2010, pp. 241–252.

[4] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. T. Devanbu, “Fair and balanced?: Bias in
bug-fix datasets,” in ESEC/SIGSOFT FSE, 2009.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertex-
tual web search engine,” in WWW, 1998, pp. 107–117.

[6] R. P. L. Buse and W. Weimer, “The road not taken: Estimating
path execution frequency statically.” in ICSE, 2009.

[7] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative
frequent pattern analysis for effective classification,” in ICDE,
2007, pp. 716–725.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An
empirical study of operating system errors,” in SOSP, 2001,
pp. 73–88.

[9] J. Cohen, Statistical Power Analysis for the Behavioral Sci-
ences, 2nd ed. Routledge, 1988.

[10] W. Cohen, “Fast effective rule induction,” in ICML, 1995.
[11] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley

Interscience, 2000.
[12] T. Fawcett, “An introduction to roc analysis,” Pattern Recogn.

Lett., vol. 27, no. 8, pp. 861–874, Jun 2006.
[13] P. Francis, D. Leon, and M. Minch, “Tree-based methods for

classifying software failures,” in ISSRE, 2004.
[14] L. C. Freeman, “A set of measures of centrality based on

betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar
1977.

[15] Y. Freund and R. E. Schapire, “Large margin classification
using the perceptron algorithm,” in Proceedings of the 11th
Annual Conference on Computational Learning Theory, 1998.

[16] Y. Freund and L. Mason, “The alternating decision tree
learning algorithm,” in ICML, 1999, pp. 124–133.

[17] J. Han and M. Kamber, Data Mining Concepts and Tech-
niques, 2nd ed. Morgan Kaufmann, 2006.

[18] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and
G. Robles, “Towards a simplification of the bug report form
in eclipse,” in MSR, 2008, pp. 145–148.

[19] H. Hosseini, R. Nguyen, and M. Godfrey, “A market-based
bug allocation mechanism using predictive bug lifetimes,” in
CSMR, 2012.

[20] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian,
“AutoODC: Automated generation of orthogonal defect clas-
sifications,” in ASE, 2011.

[21] N. Jalbert and W. Weimer, “Automated duplicate detection
for bug tracking systems,” in DSN, 2008.

[22] JDT, “Java development tools,” http://www.eclipse.org/jdt/.
[23] T. Joachims, “Training linear SVMs in linear time,” in KDD,

2006. [Online]. Available: http://svmlight.joachims.org/
[24] JUNG, “Java universal network graph framework,”

http://jung.sourceforge.net/index.html.
[25] D. Kawrykow and M. P. Robillard, “Non-essential changes in

version histories,” in ICSE, 2011, pp. 351–360.
[26] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and

S. Park, “Which crashes should I fix first?: Predicting top
crashes at an early stage to prioritize debugging efforts.” in
TSE, 2011.

[27] H. Kim, S. Kim, T. Weninger, J. Han, and T. F. Abdelzaher,
“Ndpmine: Efficiently mining discriminative numerical fea-
tures for pattern-based classification,” in ECML/PKDD (2),
2010, pp. 35–50.

[28] S. Kim and M. D. Ernst, “Which warnings should I fix first?”
in ESEC/FSE, 2007, pp. 45–54.

[29] S. Kim and E. J. W. Jr., “How long did it take to fix bugs?”
in MSR, 2006, pp. 173–174.

[30] S. Kim, T. Zimmermann, K. Pan, and E. J. W. Jr, “Automatic
identification of bug-introducing changes.” in ASE, 2006.

[31] A. Lamkanfi and S. Demeyer, “Filtering bug reports for fix-
time analysis,” in CSMR, 2012.

[32] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Pre-

dicting the severity of a reported bug,” in MSR, 2010.
[33] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck,

“Comparing mining algorithms for predicting the severity of
a reported bug,” in CSMR, 2011.

[34] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Bench-
marking classification models for software defect prediction:
A proposed framework and novel findings.” in TSE, 2008.

[35] C. X. Ling, J. Huang, and H. Zhang, “AUC: A better measure
than accuracy in comparing learning algorithms,” in Canadian
Conference on AI, 2003, pp. 329–341.

[36] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classifi-
cation of software behaviors for failure detection: a discrimi-
native pattern mining approach,” in KDD, 2009, pp. 557–566.

[37] D. Lo, S.-C. Khoo, and J. Li, “Mining and ranking generators
of sequential patterns,” in SDM, 2008, pp. 553–564.

[38] D. Lo, S.-C. Khoo, and C. Liu, “Efficient mining of recurrent
rules from a sequence database,” in DASFAA, 2008, pp. 67–
83.

[39] D. Lo, S.-C. Khoo, and L. Wong, “Non-redundant sequential
rules - theory and algorithm,” Inf. Syst., vol. 34, no. 4-5, pp.
438–453, 2009.

[40] T. Menzies and A. Marcus, “Automated severity assessment
of software defect reports,” in ICSM, 2008.

[41] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt,
and P. Balachandran, “Making defect-finding tools work for
you,” in ICSE, 2010, pp. 99–108.

[42] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall, and
G. Muller, “Faults in linux: ten years later,” in ASPLOS, 2011,
pp. 305–318.

[43] K. Pan, S. Kim, and E. J. W. Jr., “Toward an understanding
of bug fix patterns,” Empirical Software Engineering, vol. 14,
no. 3, pp. 286–315, 2009.

[44] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang, “Automated support for classifying
software failure reports,” in ICSE, 2003, pp. 465–475.

[45] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tack-
ling the poor assumptions of naive bayes text classifiers,” in
ICML, 2003, pp. 616–623.

[46] D. Romano and M.Pinzger, “Using source code metrics to
predict change-prone java interfaces.” in ICSM, 2011.

[47] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,”
in ICSE, 2007, pp. 499–510.

[48] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum,
and G. Rothermel, “Predicting accurate and actionable static
analysis warnings: An experimental approach,” in ICSE, 2008,
pp. 341–350.

[49] SPSS, “Predictive analytics software and solutions,”
http://www-01.ibm.com/software/analytics/spss/.

[50] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more
accurate retrieval of duplicate bug reports,” in ASE, 2011.

[51] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A
discriminative model approach for accurate duplicate bug
report retrieval,” in ICSE, 2010.

[52] Y. Tian, D. Lo, and C. Sun, “Improved duplicate bug report
identification,” in CSMR, 2012.

[53] WALA, “T.J. watson libraries for analysis,”
http://wala.sourceforge.net/wiki/index.php.

[54] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” in ICSE, 2008, pp. 461–
470.

[55] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?” in MSR, 2007, p. 1.

[56] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques, 2nd ed. Morgan Kaufmann,
2005.

